Polios NT170 LV | 用于粘弹性泡沫-更具可持续性的聚酯多元醇
首页 新闻媒体 行业新闻 Polios NT170 LV | 用于粘弹性泡沫-更具可持续性的聚酯多元醇

Polios NT170 LV | 用于粘弹性泡沫-更具可持续性的聚酯多元醇

07月09日 129

图源:Urethanes Technology International

 

 

用于粘弹性泡沫-更具可持续性的聚酯多元醇

More sustainable polyester polyols for viscoelastic foam

 

从床垫、坐垫到鞋垫,粘弹性泡沫广泛用于旨在增加舒适性的应用场景中。这类泡沫对动态或静态压力反应缓慢,常用于需要在大面积上均匀分散压力的场合,使用该泡沫能为消费者带来豪华与舒适之感。

 

Viscoelastic foams are widely used in comfort applications, ranging from mattresses and cushions to footwear innersoles. They respond slowly to dynamic or static stress, and are selected for many applications where it is desirable to spread pressure evenly over a wide area, giving consumers a feeling of luxury and comfort.

 

传统的软质聚氨酯泡沫配方旨在为对动态或静态压力做出快速的弹性反应,而粘弹性泡沫则设计用于产生阻尼和粘性更高的反应。

 

While conventional flexible polyurethane foam formulations are designed to give a rapid elastic response to dynamic or static stress, viscoelastic foams are designed to have a more damped, higher viscous response.

 

粘弹性泡沫的配方有赖于对传统泡沫形态的改变,使泡沫在接近室温或其使用温度时的伸缩量减少。这种泡沫的玻璃化转变温度接近于室温。

 

Formulations for viscoelastic foams rely on changing the morphology of conventional foams so that the amount of elasticity of the foam is reduced close to room temperature, or the temperature at which they will be used. Their glass transition temperature is close to room temperature.

 

有许多方法可以改变传统泡沫的形态。在一些配方中会使用低分子量的交联剂,其他方法则包括使用高、低分子量多元醇的混合物,或使用多元醇的混合物,还可以使用增塑剂。本文将集中讨论在传统聚醚多元醇配方中加入新的聚酯多元醇的作用。

 

There are a number of ways in which the morphology of conventional foams can be altered. Some formulations use low molecular weight crosslinkers. Other approaches include using blends of high and low molecular weight polyols, or mixtures of polyols. Plasticisers can also be used. This paper will concentrate on the effects of adding a new polyester polyol into the formulation alongside traditional polyether polyols.

 

 

聚酯的局限性

Polyester limitations

 

在粘弹性泡沫配方中,结合使用聚醚和聚酯多元醇已不是新鲜事,但传统配方中的一些问题限制了聚酯的使用。

 

The combination of polyether and polyester polyols in viscoelastic foam formulations is not new, but a number of problems with traditional formulations limit the use of polyesters.

 

例如,与具有相同羟基数的对应聚醚多元醇相比,传统聚酯多元醇的粘度要高出许多。这在混合和分配多元醇的过程中,或将造成多元醇难以成功分散。

 

For example, traditional polyester polyols have much higher viscosities than the corresponding polyether polyols with the same hydroxyl number. This can make it harder to successfully disperse the polyols within each other during mixing and dispensing.

 

聚氨酯泡沫的生产中要含有更高比例的回收成分,这种做法现在日益重要,这有助于减少成品的环境影响。这是由立法和消费者需求共同推动的。

 

It is now becoming increasingly important for polyurethane foam to be produced with a greater proportion of recycled content, or which can help to reduce the environmental impact of the finished product. This is being driven by legislation, and also by consumer demand.

 

Polios NT170 LV是Purinova的一类新型聚酯多元醇,该产品克服了通常影响聚酯多元醇的粘度问题,并有助于提高软质粘弹性泡沫的回收率。

 

Polios NT170 LV, a new polyester polyol from Purinova, overcomes the problem of viscosity that often affects polyester polyols, and helps to increase the recycled content of flexible viscoelastic foams.

 

该多元醇是一种饱和脂肪族类的线性聚酯多元醇。虽然是线性结构,但它能确保粘弹性泡沫具有适当的特定硬度。

 

The polyol is an aliphatic, saturated, linear polyester polyol. Despite its linear structure, it ensures that appropriate specific stiffness will be introduced to the viscoelastic foam.

 

传统上,许多基于丙氧基化甘油的聚醚多元醇都用于粘弹性泡沫配方中。新品Polios NT170 LV由环己烷氧化成环己醇和环己酮过程中形成的副产品制成,具有很高的回收物质含量。该过程在美国第9982089号专利以及波兰第229712号和第211684号专利中有所描述。

 

Traditionally, many polyether polyols based on propoxylated glycerol have been used in viscoelastic foam formulations. The new Polios NT170 LV has a high recycled content, being made from by-products formed during the oxidation of cyclohexane to cyclohexanol and cyclohexanone. This process is described in US Patent 9982089, and Polish Patents 229712 and 211684.

 

 

回收物质含量

Recycled content

 

作为重要的工业流程,己内酰胺和己二酸(用于制造尼龙6和尼龙66的单体)的生产也会产生环己烷氧化产物。如果不是Purinova在上述生产过程中使用环己烷氧化物,这些副产品或许会被当作废料,并根据EN ISO 14021被归类为消费前回收成分。新型材料NT170 LV中含有至少65%的回收和可再生成分。

 

The industrially important processes that produce caprolactam and adipic acid, the monomers used to make nylon 6 and nylon 6,6, also create cyclohexane oxidation products. If Purinova did not use these by-products in this application they could be considered waste, and it is classified as pre-consumer recycled content under EN ISO 14021. The new class NT170 LV materials contain a minimum of 65% recycled and renewable content.

 

Purinova已对聚酯多元醇的结构做出修改,以降低其粘度。新等级的产品在25℃时粘度为500-1000mPa.s,KOH值为160-180mgKOH/g,酸值为1.5mg KOH/g。这种介于黄色到棕色的液体可以用20、200和1000升的IBC容器供应,也可以散装。

 

Purinova has modified the structure of the polyester polyols to reduce their viscosity. The new grade has viscosity between 500–1000 mPa.s at 25°C with KOH values of 160–180mgKOH/g and acid number of 1.5mg KOH/g. The yellow-to-brown liquids can be supplied in 20, 200 and 1000 litre IBC containers, or in bulk.

 

 

测试配方

Test formulations

 

在一些类似于商业用途的配方中,已对该多元醇进行了测试。表1所示的是TDI交联体系中使用的多元醇的配方,表2所示的是pMDI交联体系中使用了Polios NT170 LV的配方。

 

The polyol has been tested in a number of formulations designed to resemble those in use commercially. Table 1 shows the formulations for the polyol used in TDI crosslinked systems, and Table 2 shows formulations using Polios NT170 LV in pMDI crosslinked systems.

 

Table1: TDI formulation (php)1

Formulation

A2

B

C

Polyether OH-250

80.00

70.00

60.00

Polyether OH-28

20.00

20.00

20.00

Polios NT170LV

-

10.00

20.00

Isocyanate – TDI-80 index 87

40.97

39.96

38.93

Water

1.10

1.10

1.10

Catalyst amine Dabco 33-LV

0.23

0.23

0.23

Catalyst amine Dabco BL-11

0.23

0.23

0.23

Catalyst Tin

0.05

0.05

0.05

Silicone

1.00

1.00

1.00

Cell opener

1.00

1.00

1.00

Crosslinker

1.20

1.20

1.20

Notes: 1 Parts per hundred polyol, 2reference formulation

 

我们在MDI体系中选择多元醇的添加率为5到20份,在TDI系统中选择多元醇的添加率为10到20份,以反映常规配方中的实际替代水平。

 

We chose addition rates of between 5 and 20 parts polyol in the MDI system, and 10 and 20 parts polyol in the TDI system, to reflect realistic substitution levels in conventional formulations.

 

最初的工作都集中在实验室配方上。这些配方是在 20°C 下制备而成,在加入二异氰酸酯之前,先对多元醇进行 8 秒钟的预混,然后在 3000 转/分钟的高速搅拌机中混合 10 秒钟。

 

Initial work focused on laboratory formulations. These were made at 20°C, with 8s polyol premixing before diisocyanate addition, followed by 10s mixing in a 3000 rpm high-speed mixer.

 

在泡沫稳定后,将其置于70℃的实验室干燥器中放置5分钟,在室温下经过48小时后再进行试验。在我公司客户处所进行的全规模试验得出了类似下表的结果。

 

After the foams stabilised, they were placed in a laboratory drier at 70°C for 5 minutes, and conditioned for 48 hours at room temperature before testing. Full scale full-scale trials at our customers give similar results to those shown below.

 

用TDI和MDI制成的粘弹性泡沫的传统配方与用Polios NT170 LV制成的配方在物理特性上有很大的相似性。

 

There is considerable similarity between the physical properties of conventional formulations for viscoelastic foams made with TDI and MDI and those made using Polios NT170 LV.

 

Table 2: pMDI formulation (php)1

Formulation

D2

E

F

G

H

Polyether OH-250

70.00

65.00

60.00

55.00

50.00

Polyether OH-28

20.00

20.00

20.00

20.00

20.00

Polyether OH-38

10.00

10.00

10.00

10.00

10.00

Polios NT170LV

-

5.00

10.00

15.00

20.00

Isocyanate – pMDI3

51.57

50.70

49.80

49.00

48.20

Water

2.2

2.2

2.2

2.2

2.2

Catalyst amine Dabco 33-LV

0.23

0.23

0.23

0.23

0.23

Catalyst amine Dabco BL-11

0.23

0.23

0.23

0.23

0.23

Silicone

0.65

0.65

0.65

0.65

0.65

Cell opener

0.50

0.50

0.50

0.50

0.50

Notes 1= Parts per hundred polyol, 2= Reference formulation; 3 (NCO-31) Index 85

 

从表2可以看出,随着Polios NT170的添加量从全聚醚的参照系泡沫增加到20%,在压入度为40%时,硬度(压缩硬度(CLD40%))从2.49下降到2.1千帕。在新型多元醇达到最高添加量时,断裂伸长率从参照系材料的232%增加到265.7%。但是,当样品在70℃下以50%的压缩率储存时,参照系材料和所有不同添加水平之间的压缩永久变形、断裂拉伸强度和密度几乎没有变化。

 

As can be seen in Table 2, there is a fall in hardness at 40% (Stressing hardness (CLD40%)) from 2.49 to 2.1 kPa as the amount of Polios NT170 added increases from the all-polyether reference foam to 20%. The percentage elongation at break were increased from 232% in the reference material to 265.7% at the highest addition level of the new polyol. But there was little change in compression set when samples were stored at 50% compression at 70°C, tensile strength at break and density between the reference and all the different addition levels.

 

Table 3: Physical properties of TDI foams

Foam

A1

B

C

CLD Hardness 40% (kP)

2.49

2.40

2.10

Compression (%)

1.60

1.55

1.52

Elongation (%)

232.00

256.20

265.70

Tensile strength at break (N)

9.32

9.40

9.32

Density (kg/m3)

59.70

60.10

59.90

Notes: 1 reference foam formulation

 

对于pMDI配方,在48.4kg/m3(3磅/平方英尺)聚醚基参照系泡沫和泡沫H之间几乎不存在密度变化,泡沫H的最高添加量为20%的 Polios NT170 LV。这种泡沫的密度为50.1kg/m3(3.13磅/平方英尺)。断裂拉伸强度从未改性配方的9.6到泡沫H的10.7不等,在这些添加量水平下,断裂伸长率基本不变。

 

Turning to the pMDI formulations, density is almost unchanged between the polyether-based reference foam at 48.4kg/m3 (3lbs cu ft) and foam H, which has the highest addition level of 20% Polios NT170 LV. This foam’s density is 50.1 kg/m3 (3.13lbs cu ft). Tensile strength at break ranges from 9.6 for the unmodified formulation to 10.7 for foam H and elongation at break is roughly constant at these addition levels.

 

Table 4: Physical properties of MDI foams

Foam

D1

E

F

G

H

CLD Hardness 40% (kPa)

3.42

3.31

3.27

3.34

4.10

Compression (%)

2.30

2.50

2.40

2.70

2.50

Elongation (%)

90.72

101.18

97.11

107.65

91.30

Tensile strength break (N)

9.60

9.56

8.46

9.57

10.67

Density [kg/m3)

48.40

49.20

49.00

49.50

50.10

Note: 1 reference foam formulation

 

泡沫H的硬度略有增加,其中含有20%的新型多元醇。在添加量介于15和20份之间时,硬度从3.34跃升到4.1kPA。当新型多元醇的用量从 15 份变为 20 份时,压缩变形则从 2.7%下降到 2.5%。

 

There is a slight increase in the hardness with foam H, which has 20% of the new polyol. There is a jump from 3.34 to 4.1kPA between 15 and 20 parts loading. There is also a fall in compression set from 2.7% to 2.5% as the loading changes from 15 to 20 parts of the new polyol.

 

以上结果表明,达到上述替代水平的泡沫具有与参照系泡沫相当的物理特性。

 

These results show that the foams with these substitution levels have comparable physical properties to the reference foam.

 

 

排放

Emissions

 

除了上述物理测试外,我们还对含有高达20%的 Polios NT170 LV的配方进行了排放测试。泡沫必须符合挥发性有机化合物(VOC)的排放指标,才能获准在欧盟范围内使用。大型家具制造商如宜家也有严格的VOC指标和排放标准。

 

In addition to these physical tests, we also carried out emissions tests on formulations containing up to 20% Polios NT170 LV. VOC emissions parameters must be met in order for foams to be specified for use within the EU. Large furniture makers such as Ikea also have stringent VOC and emission standards.

 

我们测试了pMDI交联配方的样品,并将样品在3天和28天内的排放与参照物进行了比较。我们从实验室制备的大块材料的中心位置取样,将样品置于含有Tenax TA的试管中。储存后,使用气相色谱-质谱仪的热解吸技术测量排放。然后对样品进行光谱库比对,并通过甲苯的数据来估算排放量。

 

We tested samples of the pMDI crosslinked formulations and compared, their emissions over three and 28 days with the reference. Samples from the centre of larger blocks prepared in the laboratory were collected and placed in tubes containing Tenax TA. After storage, emissions were measured using thermal desorption with gas chromatography-mass spectroscopy. Samples were identified with a spectral library, and the quantities estimated using data for toluene.

 

Table: 5 Emissions (µg/m3)

Period

3 Days

28 Days

Foam D1

288.46

56.91

Foam E

236.41

48.28

Foam F

250.19

96.96

Foam G

271.32

97.94

Note: 1 reference foam formulation

 

测试结果见表5。经过3天和28天的储存期,改性泡沫的排放水平低于参照系材料。在所有情况下,其排放均低于宜家所要求的28天后VOC总量应低于600µg/m3的要求。

 

The results of these tests are shown in Table 5. The level of emissions from the modified foams is lower than the reference material after three- and 28-day storage periods. In all cases, they are lower than the Ikea requirements that demand total VOC to be less than 600µg/mafter 28 days.

 

以上结果表明,在上述添加量水平上,有可能使用本款新型多元醇来制造具有较高回收物质含量的泡沫。这类泡沫的加工方式可以与粘弹性泡沫塑料的类似配方相媲美。

 

These results show that, at these addition levels, it is possible to use this new polyol to make foams with a high recycled content. They can be processed in a comparable manner to similar formulations for viscoelastic foam.

 

Tests: standards, units, descriptions

CLD Hardness 40%

PN-EN ISO 3386-1:2000/A1:2010

(kPa)

Determination of stress-straincharacteristics 

under compression - Part 1

Compression

PN-EN ISO 1856:2004/A1:2008

(%)

Determination of permanentdeformation after compression

Elongation

PN-EN ISO 1798:2009

(%)

Determination of tensilestrength and elongation at break

Tensile strength @ break

PN-EN ISO 1798:2009

(N)

Determination of tensilestrength and elongation at break

Density

PN-EN ISO 845:2010

(kg/m3)

Determination of apparent density

 

 

关于作者

About the Authors

 

Marta Pienkowska:Purinova研发总监,毕业于波兰托伦哥白尼大学高分子化学专业。她拥有多项专利,并在化学和聚氨酯领域发表过论文。

 

Marta Pienkowska, R&D director, Purinova, is a graduate of polymer chemistry from the Nicolaus Copernicus University of Torun, Poland. She has a number of patents and has published papers in the fields of chemistry and polyurethanes.

 

Monika Cybulska-Kucharska:Purinova首席技术专家,毕业于比得哥什技术与生命科学大学化学技术专业;她在聚氨酯领域已工作8年。

 

Monika Cybulska-Kucharska, chief technologist, Purinova is a graduate of chemical technology from the University of Technology and Life Sciences in Bydgoszcz. She has worked in the field of polyurethanes for eight years. 

 

Purinova成立于2006年,拥有200名员工,公司为各类不同应用领域制造聚酯多元醇和聚氨酯产品。Purinova公司位于波兰北部的比得哥什市,设有实验室并参与国际研究项目。

 

Purinova was founded in 2006 and employs 200 people making polyester polyols and polyurethane systems for a number of different application areas. The company is located in Bydgoszcz in northern Poland. The company has laboratories and participates in international research projects. 

 

原文链接:More sustainable polyester polyols for viscoelastic foam (utech-polyurethane.com)

 

免责声明:本文译自相关企业官网,在于传递更多信息及分享,并不意味着赞同其观点或证实其真实性,也不构成其他建议。仅提供交流平台,不为其版权负责。如涉及侵权,请联系我们及时修改或删除。

上海国际发泡材料技术工业展览会

2021.04.28-30

上海跨国采购会展中心

参展联系
参观联系
参观咨询
  • 开展时间
    2022年7月6-8日
  • 展会地址
    上海新国际博览中心
    上海市浦东新区龙阳路2345号
关注我们
国际泡沫展
订阅电子快讯以获取最新消息

输入邮箱,立即订阅2022上海国际发泡材料技术工业展览会信息,更多展会资讯一手掌握

主办单位

北京汇捷通国际展览有限公司

地址:北京市朝阳区时间国际中心A座2003室

电话:+ 86-10-58677998

邮箱:info@interfoam.cn

协办单位

上海市聚氨酯工业协会

地址:上海市长宁区延安西路1358号2-17B

电话:021-64941033

邮箱:spuia2011@126.com

Interfoam官方微信

©2021 INTERFOAM. ALL RIGHTS RESERVED 北京汇捷通国际展览有限公司 | 京ICP备14038783号-3
我们使用Cookie来个性化内容和广告,以提供于社交媒体功能并分析我们的流量。 我们还与社交媒体,广告和分析合作伙伴共享有关您在我们网站的信息。如果您继续使用我们的网站,即表示您同意我们对此类Cookie的使用。